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I. POSITIVE DEFINITENESS OF THE KERNELS FOR
GAUSSIANS

First, we recall from [1] and state a theorem that gives
a necessary and sufficient condition for obtaining a positive
definite (pd) kernel from a distance function.

Theorem 1. Let X be a nonempty set and f : X×X 7→ R be a
symmetric function. Then the kernel function exp(−tf(xi, xj))
is positive definite (pd) for all t > 0 if and only if f is negative
definite (nd).

In [2], the following theorem is proved accordingly.

Theorem 2. Let X be a nonempty set, V be an inner product
space, and ψ : X 7→ V be a function. Then f : X × X 7→ R
defined by f(xi, xj) = ‖ψ(xi)− ψ(xj)‖2V is nd.

Because pd kernels can define valid Reproducing Kernel
Hilbert Space (RKHS) and further allow the kernel methods in
Euclidean space to be generalized to manifolds, in this section
we try to give a rigorous proof that the proposed probabilistic
kernels for Gaussian distributions are pd.

A. The Kullback-Leibler Kernel

Currently it is hard to theoretically prove the positive
definiteness of the Kullback-Leibler kernel in Equation (3).
But it can still be used as a valid kernel and the numerical
stability is guaranteed by shifting the kernel width t as [3]. Our
empirical study also shows that the Kullback-Leibler kernel
with a proper value of t can be always guaranteed to be pd in
the experiments.

B. The Bhattacharyya Kernel

Given continuous probability distributions P and Q, their
Bhattacharyya Distance (BD) is closely related to the Bhat-
tacharyya Coefficient (BC):

BD(P,Q) = − ln(BC(P,Q)), (S1)

where BC is defined as:

BC(P,Q) =

∫ √
P (x)Q(x)dx. (S2)

According to Theorem 1, the Bhattacharyya kernel is pd for
all t ∈ R if and only if BD(P,Q) is nd, which can be proved
if BC(P,Q) is pd. This can be easily proved in the following.

For any p1, ..., pm ∈ P and α1, ..., αm ∈ R, we have
m∑
i=1

m∑
j=1

αiαjBC(pi, pj) =

∫
X

m∑
i=1

m∑
j=1

αiαj

√
pi(x)pj(x)dx

=

∫
X

(
m∑
i=1

αi

√
pi(x)

)2

dx ≥ 0

(S3)

Therefore, according to the definition of pd, BC(P,Q) is pd.

C. The Hellinger Kernel

The Hellinger Distance (HD) is defined as follows:

HD(P,Q) =

√
1

2

∫
X

(√
P (x)−

√
Q(x)

)2
dx. (S4)

According to Theorem 1, for proving the positive definite-
ness of the Hellinger kernel in Equation (7), we only need to
prove that HD2(P,Q) is nd.

For any p1, ..., pm ∈ P and α1, ..., αm ∈ R with
∑m

i=1 αi =
0, we have

m∑
i=1

m∑
j=1

αiαjHD
2(pi, pj)

=
1

2

∫
X

m∑
i=1

m∑
j=1

αiαj

(√
pi(x)−

√
pj(x)

)2

dx

= −
∫
X

(
m∑
i=1

αi

√
pi(x)

)2

dx ≤ 0

(S5)

Therefore, according to the definition nd, HD2(P,Q) is nd.

D. The kernel based on Lie Group

According to Theorem 1, for proving the positive definite-
ness of the kernel based on Lie Group in Equation (9), we only
need to prove that LGD2(Pi, Pj) is nd. This is obviously true
according to Theorem 2.

E. The kernel based on Mahalanobis distance and Log-
Euclidean distance for covariance matrices

We first need to state that the kernel based on MD and
that based on LED are both valid kernels. Since the square
of LED is obviously nd, according to Theorem 2, the kernel
based on LED is pd. Though there is little understanding about
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the positive definiteness of the kernel based on MD, we can
make it pd by properly choosing the kernel width parameter
similar to the Kullback-Leibler Kernel. Finally according to
[4], the superposition of the two pd kernels is a valid kernel.

II. GRADIENT DERIVATION

To deduce the partial derivative of the objective function
F with respect to the transformation F in Equation (22), we
derive the numerical formulation of ∂

∂FDist(ĝi, ĝj) here.

A. Kullback-Leibler Distance

In this subsection, we derive the corresponding gradients
of ∂

∂FDist(ĝi, ĝj) by referring Dist(·, ·) to the symmetric
KLD. Formally, given the corresponding distributions ĝi, ĝj
by mapping two Gaussian components gi, gj with F , their
KLD is of the following form.

KLD(ĝi, ĝj)

=
1

2

(
tr
(
(FT ΣjF )−1FT ΣiF + (FT ΣiF )−1FT ΣjF

)
+ (µi − µj)

TF (FT ΣiF )−1FT (µi − µj)

+ (µi − µj)
TF (FT ΣjF )−1FT (µi − µj)

)
−D,

(S6)

Let J i
1(F ) = (µi − µj)

TF (FT ΣiF )−1FT (µi − µj) and
J ij
2 (F ) = tr

(
(FT ΣjF )−1FT ΣiF

)
, we can rewrite Equa-

tion (S6) as follows.

KLD(ĝi, ĝj)

=
1

2

(
J ij
2 (F ) + Jji

2 (F ) + J i
1(F ) + Jj

1 (F )

)
−D.

(S7)

Firstly, we consider ∂Ji
1(F )
∂F and compute its p-th row and

q-th column element in the following.

∂J i
1(F )

∂Fpq

=

[
∂

∂Fpq

(
FT (µi − µj)

)]T
(FT ΣiF )−1FT (µi − µj)

+ (µi − µj)
TF

[
∂

∂Fpq
(FT ΣiF )−1

]
FT (µi − µj)

+ (µi − µj)
TF (FT ΣiF )−1

[
∂

∂Fpq

(
FT (µi − µj)

)]
.

(S8)

We can easily obtain

∂

∂Fpq

(
FT (µi − µj)

)
= (µi − µj)q (S9)

and
∂

∂Fpq
(FT ΣiF )−1

= −(FT ΣiF )−1
[

∂

∂Fpq
(FT ΣiF )

]
(FT ΣiF )−1

= −(FT ΣiF )−1
(
FT ΣiE

pq + EqpΣiF
)

(FT ΣiF )−1,
(S10)

where Epq is the single-entry matrix with 1 at (p, q) and
0 elsewhere. Hence, ∂Ji

1(F )
∂F can be finally formulated by

substituting Equation (S9) and (S10) into (S8).
Next, we compute the partial derivative of J ij

2 (F ) with
respect to F .

∂J ij
2 (F )

∂Fpq
=

[
∂

∂Fpq
(FT ΣjF )−1

]
FT ΣiF

+ (FT ΣjF )−1
[

∂

∂Fpq

(
FT ΣiF

)]
,

(S11)

where ∂
∂Fpq

(FT ΣjF )−1 and ∂
∂Fpq

(
FT ΣiF

)
have been given

in Equation (S10).

B. Bhattacharyya Distance

Here we give the derivation when Dist(·, ·) refers to BD in
Equation (4). By defining

J1(F ) = (µi − µj)
TF (FT ΣF )−1FT (µi − µj), (S12)

we can see that it has a similar numerical formulation with
J i
1(F ). Then noting that

ln(det(FT ΣF )) = 2ΣF (FT ΣF )−1, (S13)

the partial derivative of BD(ĝi, ĝj) with respect to F can be
formulated as follows.

∂

∂F
BD(ĝi, ĝj) =

1

8

∂

∂F
J1(F ) + ΣF (FT ΣF )−1

− 1

2
F (FT ΣiF )−1 − 1

2
F (FT ΣjF )−1.

(S14)

C. Hellinger Distance

For HD, it can be formulated with BD accordingly.

HD2(ĝi, ĝj) = 1− exp

{
−BD(ĝi, ĝj)

}
, (S15)

Hence, the derivation is similar with that of BD.
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